skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narang, Shivika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. We initiate the study of matching roommates and rooms wherein the preferences of agents over other agents and rooms are complementary and represented by Leontief utilities. In this setting, 2n agents must be paired up and assigned to n rooms. Each agent has cardinal valuations over the rooms as well as compatibility values over all other agents. Under Leontief preferences, an agent’s utility for a matching is the minimum of the two values. We focus on the tradeoff between maximizing utilitarian social welfare and strategyproofness. Our main result shows that—in a stark contrast to the additive case— under binary Leontief utilities, there exist strategyproof mechanisms that maximize the social welfare. We further devise a strategyproof mechanism that implements such a welfare maximizing algorithm and is parameterized by the number of agents. Along the way, we highlight several possibility and impossibility results, and give upper bounds and lower bounds for welfare with or without strategyproofness. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  3. We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts—such as envy-freeness up to one item (EF1) and minimax share (MMS)—to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every tree instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement these results by theoretically and experimentally analyzing the price of fairness. 
    more » « less
  4. We study the problem of capacity modification in the many-to-one stable matching of workers and firms. Our goal is to systematically study how the set of stable matchings changes when some seats are added to or removed from the firms. We make three main contributions: First, we examine whether firms and workers can improve or worsen upon changing the capacities under worker-proposing and firm-proposing deferred acceptance algorithms. Second, we study the computational problem of adding or removing seats to either match a fixed worker-firm pair in some stable matching or make a fixed matching stable with respect to the modified problem. We develop polynomial-time algorithms for these problems when only the overall change in the firms’ capacities is restricted, and show NP-hardness when there are additional constraints for individual firms. Lastly, we compare capacity modification with the classical model of preference manipulation by firms and identify scenarios under which one mode of manipulation outperforms the other. We find that a threshold on a given firm’s capacity, which we call its peak, crucially determines the effectiveness of different manipulation actions. 
    more » « less